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Abstract Estimating marker effects based on routinely

generated phenotypic data of breeding programs is a cost-

effective strategy to implement genomic selection. Trun-

cation selection in breeding populations, however, could

have a strong impact on the accuracy to predict genomic

breeding values. The main objective of our study was to

investigate the influence of phenotypic selection on the

accuracy and bias of genomic selection. We used experi-

mental data of 788 testcross progenies from an elite maize

breeding program. The testcross progenies were evaluated

in unreplicated field trials in ten environments and finger-

printed with 857 SNP markers. Random regression best

linear unbiased prediction method was used in combination

with fivefold cross-validation based on genotypic sam-

pling. We observed a substantial loss in the accuracy to

predict genomic breeding values in unidirectional selected

populations. In contrast, estimating marker effects based on

bidirectional selected populations led to only a marginal

decrease in the prediction accuracy of genomic breeding

values. We concluded that bidirectional selection is a

valuable approach to efficiently implement genomic

selection in applied plant breeding programs.

Introduction

Genomic selection promises to substantially increase

selection gain in crop and livestock breeding programs

(Meuwissen et al. 2001; Heffner et al. 2010). It differs from

previous strategies such as marker-assisted selection by

using a large number of molecular markers ideally cover-

ing the whole genome to estimate genomic breeding values

(Jannink et al. 2010). As the first step in genomic selection,

marker effects are estimated in a training population. In the

second step, individuals related or unrelated to the training

population that have been genotyped but not phenotyped

are selected based on their marker profiles.

First empirical findings for dairy cattle supported the

potential of genomic selection for livestock breeding (e.g.,

Hayes et al. 2009; Luan et al. 2009). For plant breeding,

empirical evaluation of the accuracy of genomic selection

has been done using cross-validation in biparental families

of maize, barley and Arabidopsis (Lorenzana and Bernardo

2009). Crossa et al. (2010, 2011) examined empirically the

prospects of genomic selection in diverse panels of wheat

and maize lines. Albrecht et al. (2011) and Zhao et al.

(2012a, b) used cross-validation based on testcross proge-

nies of inbred lines from applied maize breeding programs

to estimate the accuracy of genomic selection. The findings

of the above-mentioned studies suggest that genomic

selection can be an effective strategy in plant breeding with

high accuracies in predicting genomic breeding values.

Using routinely generated phenotypic data of applied

plant breeding programs is an economic approach to

implement genomic selection. Advanced breeding
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populations are selected by applying multi-stage selection:

at early stages several families with large population size

are commonly evaluated in a small number of environ-

ments and at later stages few families with a small number

of individuals are phenotyped in a large number of envi-

ronments (Longin et al. 2006, 2007). A training population

consisting of routinely phenotyped individuals at early

stages is suboptimal as genotypic values are estimated only

with a moderate heritability. While heritability is high for

lines tested at later stages, truncation selection may lead to

a severe bias in the genetic makeup of the training popu-

lation. To the best of our knowledge, no study was pub-

lished on the role of truncation selection in training

populations on a bias of genomic selection, although it is of

high relevance for applied plant breeding populations.

In the context of linkage mapping, selective genotyping

was proposed to improve the efficiency of QTL detection

under a restricted budget (Lebowitz et al. 1987; Lander and

Botstein 1989; Sun et al. 2010). For selective genotyping,

DNA markers were only assayed for the most informative

progenies, those with high or low phenotypic values of the

target trait. This bidirectional selection showed to be much

more powerful than random sampling (Navabi et al. 2009)

but power and type I error were still better in the full data

set compared to bidirectional selective genotyping (Sun

et al. 2010). The possibility of selective genotyping in the

context of genomic selection has to the best of our

knowledge not yet been investigated.

The main goal of our study was to investigate the

influence of phenotypic selection on the accuracy and bias

of genomic selection using large multi-parental populations

from a commercial maize breeding program. Our objec-

tives were to (1) study the prediction accuracy of genomic

breeding values and bias in unidirectional or bidirectional

selected populations; (2) assess how the balanced and

unbalanced family sizes affect the accuracy to predict

genomic breeding values; and (3) evaluate how to effi-

ciently implement genomic selection in applied breeding

programs.

Materials and methods

Genotypic and phenotypic data

The field experiments were described in detail by Steinhoff

et al. (2011). Briefly, six segregating families, with a total

of 788 individuals were obtained from diallel crosses

between four elite dent inbreds. Testcross progenies were

evaluated in 2007 in Italy at 10 locations with unreplicated

trials (Supplementary Table S1). The number of progenies

in each family varied from 104 to 143. Data were recorded

for grain yield (Mg ha-1) at an adjusted moisture

concentration of 155 g kg-1. Each of the segregating

families was evaluated in separate but adjacent field trials

connected with common checks. Genotypic variances of

the total population (r2
G) were estimated with following

regression model: yEnv ¼ 1nlþ ZUEnv þ GUG þ e, where

yEnv refers to the values of phenotypes of single environ-

ments adjusted using check varieties (Steinhoff et al.

2011), 1n is a vector with the length of the number of

individuals g times the number of environments l, l
denotes the overall mean, Z is a design matrix assigning

fixed environment effects to the phenotypes, UEnv is a

vector of environments effects, G is a design matrix for

random genotypic effects, UG refers to vector of the effects

of the genotypes and here e is a residual term comprising

genotype–environment interaction and error associated

with yEnv. Moreover, best linear unbiased estimates

(BLUEs) of means for testcross progenies and parents

across environments were determined by assuming fixed

genotypic effects. The 788 individuals have been finger-

printed with 857 high-quality SNP markers used for the

further analyses (details of the fingerprinting have been

described previously by Steinhoff et al. 2011).

Data analysis

Genomic selection was carried out similarly as described

earlier by Zhao et al. (2012a). In brief, breeding values were

estimated by the following model y ¼ 1glþ Xaþ e; where

y is a g 9 1 vector of BLUEs of genotype means estimated

across environments based on the above defined model, X ¼
ðX1;X2; . . .;XmÞ is a g 9 m matrix and m refers to the number

of markers, where Xj ¼ ðX1j;X2j; . . .;XgjÞT is a g 9 1 vector

denoting the genotype of the individuals for marker j. Xij ¼ 0

if individual i is homozygous for the first allele at locus

j, Xij ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2� FinbÞpjð1� pjÞ
p

if heterozygous, Xij ¼
2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2� FinbÞpjð1� pjÞ
p

if individual i is homozygous

for the second allele at locus j, where Finb denotes the

inbreeding coefficient of individual i and pj refers to the allele

frequency at marker j, a ¼ ða1; a2; . . .; amÞT is a m 9 1

vector, and aj is the effect of the jth marker. Meuwissen

et al. (2001) proposed that the regression coefficients

are independent and random draws from a normal distribu-

tion and, consequently, the variance of aj is assumed to be

r2
Genotype=m� r2

Genotype was chosen to reflect the genetic

variance of the underlying population. The estimates of aj

were obtained from mixed-model equations (Henderson

1984). We used an estimate of the error variance of the

BLUEs across environments, i.e., r2
Error (which comprises

the genotype times environment interaction variance and the

error variance) divided by the number of environments l.

Consequently, the shrinkage parameter k2 was defined as

ðr2
Error=lÞ=ðr2

Genotype=mÞ (Meuwissen et al. 2001). Given the
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estimates of a and l as â and l̂, genomic breeding values

were predicted as PV ¼ 1gl̂þ Xâ:

Cross-validation

We applied fivefold cross-validation based on genotypic

sampling to evaluate the accuracy of genomic selection

focusing on selected training populations. Here, the entire

data set was randomly split into five subsets holding the

proportion of individuals per population constant. Four

subsets were combined and formed the training set for

estimating genetic effects. The remaining subset formed

the prediction set, in which predictions derived from the

training set are tested for their predictive ability by esti-

mating the Pearson correlation coefficient (rMP) (Albrecht

et al. 2011). The accuracy of genomic selection was

expressed as rGS = rMP/h (Dekkers 2007; Albrecht et al.

2011), where h was the square root of heritability. The

regression of the observed phenotypes on the predicted

phenotypes was used as a measure of the bias for the

estimated genomic breeding values, where a slope of the

regression of r = 1 denotes no bias, r \ 1 implies an

underestimation of the observed phenotypes on average

r times, and a regression coefficient of r [ 1 implies an

overestimation of the observed phenotypes on average

r times. In addition, we investigated the accuracy of the

estimates of the marker effects by correlating marker

effects estimated for the training population with those

estimated for the whole population. The sampling of

training and prediction set was repeated 5,000 times.

We estimated the marker effects and predicted the

genomic breeding values for varying training and predic-

tion sets using mass selection based on BLUEs across

environments as follows:

1. Random—Training set: We first selected randomly

80 % of the individuals of the total data set. Then we

further randomly selected 10–90 % of the individuals.

Prediction set: The remaining 20 % of the individuals

of the total data set were used to evaluate the

prediction accuracy.

2. Unidirectional—Training set: We first selected ran-

domly 80 % of the individuals of the total data set.

Then we applied unidirectional selection to choose

10–90 % of the individuals with highest genotypic

values. Prediction set: The remaining 20 % of the

individuals of the total data set were used to evaluate

the prediction accuracy.

3. Unidirectional-mod—Training set: We first selected

randomly 80 % of the individuals of the total data set.

Then we applied unidirectional selection to choose

30–50 % individuals with highest genotypic values.

Prediction set: For the remaining 20 % of the

individuals of the total data set unidirectional selection

was applied to choose 30–50 % individuals with

highest genotypic values. Prediction accuracy was

evaluated using these selected individuals.

4. Bidirectional—Training set: We first randomly

selected 80 % of the individuals of the total data set.

Then we applied bidirectional selection to choose

10–90 % of the individuals with extreme (lowest or

highest) genotypic values. Prediction set: The remain-

ing 20 % of the individuals of the total data set were

used to evaluate the prediction accuracy.

5. Unbalanced bidirectional—Training set: We first

selected randomly 80 % of the individuals of the total

data set. Then we applied unbalanced bidirectional

selection with varying proportions of inferior individ-

uals to choose 30–50 % of the individuals with

extreme genotypic values. Prediction set: The remain-

ing 20 % of the individuals of the total data set were

used to evaluate the prediction accuracy.

Furthermore, we estimated the marker effects and pre-

dicted the genomic breeding values using family selection.

For this scenario, we selected an unequal number of indi-

viduals per biparental family depending on the mean per-

formance of the family. Sampling within biparental

families was done randomly. This scenario reflects the

situation that family sizes may vary according to the

parental mean.

Results

With bidirectional selection and a high selection intensity

of 10 %, prediction accuracy of genomic breeding values

was superior compared to random selection and explains

74 % of the level observed for the full data set (Fig. 1). In

contrast, with unidirectional selection and high selection

intensities prediction accuracy of genomic breeding values

was low with values of rGS \0.20, i.e., 29 % of the level

observed for the full data set. Prediction accuracies of

genomic breeding values were always lower for unidirec-

tional compared to random selection. Interestingly, pre-

diction accuracy of genomic breeding values was higher

when unidirectional selection was applied only for the

training population compared to a scenario where unidi-

rectional selection was applied for both the training and

prediction set (Fig. 2). This higher accuracy was more

pronounced with increasing number of selected

individuals.

For bidirectional selection, we observed no bias in

predicting genomic breeding values (Fig. 3). In contrast,

with unidirectional selection prediction of genomic

breeding values led to an underestimation of the observed
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breeding value by up to 8 %. With decreasing selection

intensities this bias was monotonically decreasing.

For unbalanced bidirectional selection with a proportion

of 10 % of inferior genotypes, prediction accuracy of

genomic breeding values amounted to 81 % (rGS = 0.47)

of the accuracy reached with the full data set (Fig. 4).

Selection intensity of 30 % resulted in substantially lower

accuracies compared to selection intensity of 40 and 50 %.

Moreover, with unbalanced bidirectional selection, esti-

mated genomic breeding values underestimated the

observed breeding values by up to 4 % (Fig. 5). As the

proportion of inferior genotypes in training population

reached 30 %, the observed bias was negligible.

Promising families can efficiently be pre-selected based

on midparent performance and, therefore, family sizes

often increase in applied plant breeding programs with

increasing midparent performance. We investigated the
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influence of this unbalanced sampling and observed a

negligible change in prediction accuracy of genomic

breeding values for balanced versus unbalanced sampling

when total population size amounted to 450 individuals

(Table 1). Nevertheless, with a total population size of 345

individuals unbalanced sampling led to a reduction in

prediction accuracy of genomic breeding values.

Discussion

Using routinely generated phenotypic data of applied plant

breeding programs represents a cost-effective strategy to

implement genomic selection. Nevertheless, breeding

populations are based on multi-stage selection, and there-

fore, individuals phenotyped at a large number of

environments often belong to highly selected populations.

Truncation selection leads to a severe bias in the genetic

makeup of the training population, which could have a

strong impact on the accuracy of genomic selection. This

stimulated us to investigate the influence of selection in the

training population on the accuracy of genomic selection

using experimental data from an elite maize breeding

program.

Bias and prediction accuracy for unidirectional

selection

We observed an underestimation of genomic breeding

values of up to 8 % for scenarios where unidirectional

selection was applied with high selection intensities

(Fig. 3). The bias is relevant if estimated genomic breeding

values are compared to phenotypic data of other varieties.

This is for instance relevant for maize breeding programs

based on doubled haploids, where uniform seed production

is a major concern for the first cycles of selection. In this

scenario, performance of lines with low amount of seeds in

early selection stages can only be predicted using genomic

breeding values while those with sufficient seeds are phe-

notypically evaluated. In such a situation bias will severely

hamper a fair comparison of those lines where only

genomic predicted breeding values are available versus

lines which were also evaluated in field trials.

Because of limited economic resources, plant breeders

often focus on the most promising crosses. One frequently

used criterion for the choice of promising crosses is the

average performance of the parents, which is a good pre-

dictor of the mean performance of a cross (e.g., Melchinger

et al. 1998; Utz et al. 2001; Miedaner et al. 2006). We

mimicked unbalanced population size based on the

expected average testcross performance and observed a

reduction in the accuracy to predict genomic breeding

values only for scenarios with very unbalanced population

sizes (Table 1). This is in line with results of the study of

Zhao et al. (2012b) who also reported a low impact of

unbalanced population sizes on the accuracy to predict

genomic breeding values for grain yield in maize. Conse-

quently, unbalanced population sizes due to selection based

on average performance of the parents do not substantially

hamper the use of routinely generated phenotypic data for

genomic selection.

Estimating marker effects in populations where unidi-

rectional selection was applied with high selection intensity

led to substantially lower accuracies to predict genomic

breeding values compared to the situation where marker

effects were estimated in unselected populations of the

same size (Fig. 1). We observed the same trend also on the

level of the marker effects (Supplementary Fig. S1). Our

findings can be explained by a substantial shift in allele
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Fig. 5 Bias in prediction of genomic breeding values for grain yield

for unbalanced bidirectional selection with varying proportions of

inferior versus superior genotypes with three selection intensities

Table 1 Decrease in prediction accuracy (D) for two scenarios of

individuals selection within families according to their average grain

yield performance (A-GY in Mg ha-1) (N1 and N2) versus balanced

sampling of an equal number of individuals within families

Family A-GY N1 D N2 D

Pop-A 9 B 13.69 50 -0.04 20 -0.11

Pop-A 9 C 13.89 90 0.01 80 -0.05

Pop-A 9 D 13.82 70 0.00 50 -0.05

Pop-B 9 C 13.88 80 0.02 65 0.03

Pop-B 9 D 13.78 60 -0.04 35 -0.08

Pop-C 9 D 14.02 100 0.04 95 0.09

Total 13.84 450 0.00 345 -0.03
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frequencies due to selection and reduced genetic variance

in selected training populations. On the other hand, accu-

racy to predict genomic breeding values was further

decreased if unidirectional selection was applied not only

in the estimation set, but also in the prediction set (Fig. 2).

This can be due to a high selection pressure within the

prediction set causing a substantial decrease in the genetic

variance but with no impact on the variance of the error

prediction.

After an evaluation of the per se performance of inbred

lines, first tests for general combining ability (GCA) are

often conducted in commercial maize breeding programs in

a limited set of around 3–4 environments (Longin et al.

2007). As traits measured for line per se performance are

not tightly correlated with testcross performance for grain

yield (e.g., Mihaljevic et al. 2005), populations evaluated

in the early GCA tests might be considered as nearly

unselected. We investigated a scenario reflecting the use of

phenotypic data of the early GCA test where marker effects

were estimated in plants phenotyped at low intensity (three

locations) to predict genotypic values of plants phenotyped

with high intensity (10 locations) using fivefold cross-

validation and observed an accuracy of rGS = 0.37 (Sup-

plementary Fig. S2). This accuracy is substantially higher

compared to scenarios of unidirectional selection (Fig. 1)

with high selection intensity and phenotypic evaluation at

10 locations. Our finding can be interpreted as an indicator

that use of unselected early GCA test data should be pre-

ferred compared to using unidirectional selected germ-

plasm of later cycles of selection for estimating the marker

effects.

Prediction accuracy and bias based on bidirectional

selection

A cost-effective strategy to estimate marker effects with

high precision could be to assay also genotypes with low

yield potential besides the high-performing individuals in

later selection cycles. Our results clearly underlined the

high potential of this bidirectional selection with only

moderate decrease in accuracies to predict genomic

breeding values compared to the full data set (Fig. 1). The

bias in estimating genomic breeding values was also neg-

ligible, which is a further advantage of bidirectional

selection. As a constant update of the prediction model

required for genomic selection (for review see Albrecht

et al. 2011) ideally conducted with genotypic values

determined with high heritability, bidirectional selection is

a promising approach to implement genomic selection in

applied breeding programs.

Our finding of a negligible bias for bidirectional com-

pared to unidirectional selection (Fig. 3) is in contrast to

the results of Lander and Botstein (1989) and Melchinger

et al. (2012) where they reported an overestimation of QTL

effects with bidirectional selection. This difference can be

explained by the assumption of fixed QTL effects applying

multiple linear regression QTL mapping approaches as

opposed to random marker effects for genomic selection

based on random regression best linear unbiased prediction.

Assuming random marker effects leads to shrinkage of the

marker effects towards the mean, for bidirectional selection

the mean does not change resulting in marker effects esti-

mated with a negligible bias. In contrast, mean changes for

unidirectional selection and consequently shrinkage of marker

effects causes a bias in genomic selection.

With the aim to further decrease the need to test low-per-

forming individuals at many locations, we studied whether

accuracy can be substantially increased compared to random

selection if only a small proportion of inferior genotypes are

used in bidirectional selection. Our findings clearly suggested

that even with a proportion of 10–15 % of inferior genotypes

high accuracies to predict genomic breeding values can be

reached (Fig. 4). The bias in this scenario was also negligible

(Fig. 5). Consequently, our findings showed that an update of

estimation of marker effects can be cost-efficiently realized in

the framework of routine breeding programs by implementing

bidirectional selection with 10–15 % of inferior genotypes in

the phenotypic evaluation of breeding germplasm in later

cycles of selection.

Conclusions and outlook

Our findings are based on six biparental populations each

consisting of at least 104 individuals. Therefore, the results

on impact of selection on accuracy and bias for genomic

selection are relevant for scenarios focusing on the genetic

variation within biparental populations. The genetic vari-

ation within biparental population is of utmost importance,

because across population variation can be predicted very

precisely based on GCA effects of the parents (Melchinger

et al. 1998). Precise estimates for GCA effects are com-

monly available for second cycle maize breeding programs.

The six populations were established using a restricted

number of four parental lines, which questions the rele-

vance for a situation of a more diverse population as

reported for instance by Albrecht et al. (2011). Unbalanced

sampling in our study revealed that accuracy still amounted

to 0.35 in small populations consisting of only 20 indi-

viduals (Table 1). This can be interpreted as an indicator

that besides linkage information of within-biparental pop-

ulation, linkage disequilibrium across the six biparental

populations is also exploited, and, therefore, our results are

also relevant for genetically broader populations. Never-

theless, it is of high interest to validate our findings with

populations established using a larger number of parents.
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The results of our re-sampling procedure revealed a

substantial loss in the accuracy to predict genomic breeding

values in populations with unidirectional selection. Con-

sequently, estimation of marker effects using routinely

generated phenotypic data of applied plant breeding pro-

grams in advanced cycles of selection cannot be recom-

mended. In contrast, use of populations with bidirectional

selection is an interesting alternative for a cost-efficient

implementation of genomic selection. Using an unbalanced

bidirectional selection strategy based on only a small pro-

portion of inferior genotypes further improves the effi-

ciency to implement genomic selection in applied plant

breeding programs.

In the context of linkage mapping Bayesian approaches

have been suggested for QTL detection from single-tail

sample of phenotype distributions (e.g., Sillanpää and Hoti

2007). It is of utmost interest to extend these models for

genomic selection with the aim to estimate marker effects

in unidirectional selected breeding populations. This need

is apparent considering the drastic reduction in accuracy of

genomic selection when estimating marker effects in uni-

directional selected populations.
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